
iOS Blocks 

Application Programming Interface 

Contents: 

1.Overview 

2.Design considerations 

3.Content view 

4.Buttons view 

5.Alternative icon view 

6.Additional optional methods 

7.Widget directory layout 

8. Info.plist options 



Overview 

An iOS Blocks widget is simply a class that implements the methods given by the provided 
delegate. In the provided templates for both theos and iOSOpenDev, this class is a subclass of 
UIViewController. 

There are a number of both required and optional delegate methods to implement in your custom 
widget: 

@protocol IBKWidget <NSObject>

@required
-(UIView*)viewWithFrame:(CGRect)frame isIpad:(BOOL)isIpad;
-(BOOL)hasButtonAreaView;
-(BOOL)hasAlternativeIconView;

@optional 

-(UIView*)buttonAreaViewWithFrame:(CGRect)frame;
-(BOOL)wantsNoContentViewFadeWithButtons;
-(UIView*)alternativeIconViewWithFrame:(CGRect)frame;
-(NSString*)customHexColor;
-(void)willRotateToInterfaceOrientation:(int)orient;
-(void)didRotateToInterfaceOrientation:(int)orient;

In addition to these, there are options that can be specifed within the Info.plist fle of your 
widget's bundle. 



Design considerations 
When designing and building your widget, you need to adhere to a few design criteria set out by 
the original designer, @technofou: 

Each widget should be interacted with by gestures, and any tap gesture should only be registered
in the view returned by: 

-(UIView*)buttonAreaViewWithFrame:(CGRect)frame;

In addition, launching of an app is handled only by the user tapping on the icon area in the lower 
left; this is handled by the iOS Blocks framework. Also, if a button view is made available by your 
widget, then the content area will be faded out at the bottom as above.

Of course, this doesn't need to be adhered to exactly; some widgets may have functions that 
necessitate tapping on the content view for example. Additionally, don't feel fully constrained to 
the exact layout of buttons, icon and content – the in-built Calendar widget doesn't, as shown 
below:



Content View

The content view is the view returned by:

-(UIView*)viewWithFrame:(CGRect)frame isIpad:(BOOL)isIpad;

This method is called with the frame variable being the size of the widget, and is also called frst 
within the framework, hence providing it with the isIpad variable.

When building your widget, you should always assume that the height of this view will be 
constrained to just above the icon's height, as given by:

[objc_getClass(“IBKAPI”) heightForContentView];

The need for the view to be the size of the widget is if a custom background is applied to the 
content view, and this is wanted to cover the entire widget. The constraint however is so that 
content such as table view cells are not covered by the icon view which may look odd, and so 
that content isn't displayed underneath the faded area when buttons are in use. That said, using 
the constraint is optional.

When on a device that can have a rotating SpringBoard, the size of the content view's frame will 
be modifed. As a result, it is recommended to use a subclass of UIView for your content view, as 
then you can override 

-(void)layoutSubviews;

to correctly re-layout the subviews with your view's new size.



Buttons View
The buttons view is returned by:

-(UIView*)buttonAreaViewWithFrame:(CGRect)frame;

To specify that your widget requires this view, you must also return YES in 

-(BOOL)hasButtonAreaView;

This view will never have it's frame change size during rotation, so you will not need to modify the 
positioning and size of any element. 

The height of the button view will always be the same as that of the icon view/image. 

Additionally, the iOS Blocks framework will automatically apply a fading mask to the bottom of the
content view if 

-(BOOL)hasButtonAreaView;

returns YES. If you wish to disable that, you will need to return YES in 

-(BOOL)wantsNoContentViewFadeWithButtons;



Alternative Icon View
The alternative icon view allows you to specify a custom view for your widget's icon. This can be 
anything; the in-built Calendar widget for example displays the current day here.

To specify that your widget will return a custom icon view, you will need to return YES in

-(BOOL)hasAlternativeIconView;

and then also implement

-(UIView*)alternativeIconViewWithFrame:(CGRect)frame;

As with the buttons view, this will not change frame size during rotation, and will also keep the 
same origin too. Additionally, this view does not mask to bounds, so you may extend beyond the 
given bounds. Bear in mind though that the touch area for launching the icon will not extend 
beyond the frame given.



Additional optional methods
In addition to the methods already covered by this document, there are also other methods that 
you can implement in your widget that will afect how the framework will treat it.

For now, this is only the below method:

-(NSString*)customHexColor;

Implementing this will allow you to specify a custom colour in hex for the background of the 
widget. Nothing fancy, just do:

return @”FFFFFF”;



Widget directory layout
Each widget will have an Info.plist fle and an executable at a minimum, like so:

Additionally, icon fles are not mandatory; if none are present, then the app's icon will be used 
instead. The iOS Blocks framework will automatically search for an Icon.png with the appropriate 
sufx for device resolution.

The folder name for your widget should be like so:

<your_dev_name>.<app_bundle_id>

e.g.

matchstic.com.clickgamer.AngryBirds

The reasoning for this is so that multiple widgets for the same app may be installed, and then the 
user can choose which to use in the iOS Blocks settings.

Default widgets provided by iOS Blocks will omit the <your_dev_name> prefx.

All widgets are located in /var/mobile/Library/Curago/Widgets



Info.plist Options
Within each widget's directory is an Info.plist which also contains a few additional options; most 
options are only relevant when using HTML instead of Objective-C, which is covered by another 
document. Only those relevant are given here.

CustomGameWidget : boolean

Specify true if you are making a widget for a game, else iOS Blocks will display it's own game 
widget rather than yours.

CustomColor : string

A hex string representing the background colour of the widget. This is not necessary if you 
implement the given protocol method for this.

WantsNotificationsTable : boolean

Specify true if you wish to use iOS Blocks' in-built notifcations widget, but also want to 
customise it with a custom background colour or icon image. Bear in mind that you cannot load 
up any code if this is true.


