iOS Blocks

Application Programming Interface

Contents:
1.Overview
2.Design considerations
3. Content view
4.Buttons view
5. Alternative icon view
6. Additional optional methods
7.Widget directory layout
8.Info.plist options

Overview

An iOS Blocks widget is simply a class that implements the methods given by the provided
delegate. In the provided templates for both theos and iOSOpenDey, this class is a subclass of
UlViewController.

There are a number of both required and optional delegate methods to implement in your custom
widget:

@protocol IBKWidget <NSObject>

@required

—(UIViewx)viewWithFrame: (CGRect)frame isIpad: (BOOL)isIpad;
—(BOOL)hasButtonAreaView;

—(B0OOL)hasAlternativeIconView;

@optional

—(UIViewx)buttonAreaViewWwithFrame: (CGRect) frame;
—(BOOL)wantsNoContentViewFadeWithButtons;
—(UIViewx)alternativeIconViewWithFrame: (CGRect)frame;
—(NSString*)customHexColor;
—(void)willRotateToInterfaceOrientation: (int)orient;
—(void)didRotateToInterfaceOrientation: (int)orient;

In addition to these, there are options that can be specified within the Info.plist file of your
widget's bundle.

Design considerations

When designing and building your widget, you need to adhere to a few design criteria set out by
the original designer, @technofou:

REE A
WSS

:’. ‘I lcon
J Noframe, 50% (iPhone) 85% (iPad)
for IPad

L—="" Bouble padding

E== control (Tap) Zone

Recommended setting
Alignment with icon

——— :
I 1 Content/Interaction Zone
[Recommended setting

Content fades at bottom

Each widget should be interacted with by gestures, and any tap gesture should only be registered
in the view returned by:

—(UIViewsk)buttonAreaViewWithFrame: (CGRect) frame;

In addition, launching of an app is handled only by the user tapping on the icon area in the lower
left; this is handled by the iOS Blocks framework. Also, if a button view is made available by your
widget, then the content area will be faded out at the bottom as above.

Of course, this doesn't need to be adhered to exactly; some widgets may have functions that
necessitate tapping on the content view for example. Additionally, don't feel fully constrained to
the exact layout of buttons, icon and content - the in-built Calendar widget doesn't, as shown
below:

o
Second UX talk @

| Baton Rouge 1
3 | Second UX talk 1
| skype Presentation Baton Rouge Second UX talk

Baton Rouge
Saturday /]

Skype Presentation

I Skype Presentation

14 s 14

4

Saturday

Content View

The content view is the view returned by:
—(UIViewk)viewWithFrame: (CGRect)frame isIpad: (BOOL)isIpad;

This method is called with the frame variable being the size of the widget, and is also called first
within the framework, hence providing it with the isIpad variable.

When building your widget, you should always assume that the height of this view will be
constrained to just above the icon's height, as given by:

[objc_getClass(“IBKAPI”) heightForContentView];

The need for the view to be the size of the widget is if a custom background is applied to the
content view, and this is wanted to cover the entire widget. The constraint however is so that
content such as table view cells are not covered by the icon view which may look odd, and so
that content isn't displayed underneath the faded area when buttons are in use. That said, using
the constraint is optional.

When on a device that can have a rotating SpringBoard, the size of the content view's frame will
be modified. As a result, it is recommended to use a subclass of UlView for your content view, as
then you can override

—-(void) layoutSubviews;

to correctly re-layout the subviews with your view's new size.

Buttons View

The buttons view is returned by:
—(UIViewx)buttonAreaViewWwithFrame: (CGRect) frame;

To specify that your widget requires this view, you must also return YES in
—-(BOOL)hasButtonAreaView;

This view will never have it's frame change size during rotation, so you will not need to modify the
positioning and size of any element.

The height of the button view will always be the same as that of the icon view/image.

Additionally, the iOS Blocks framework will automatically apply a fading mask to the bottom of the
content view if

—(BOOL)hasButtonAreaView;
returns YES. If you wish to disable that, you will need to return YES in

—(BOOL)wantsNoContentViewFadeWithButtons;

Alternative Icon View

The alternative icon view allows you to specify a custom view for your widget's icon. This can be
anything; the in-built Calendar widget for example displays the current day here.

To specify that your widget will return a custom icon view, you will need to return YES in
—-(BOOL)hasAlternativeIconView;

and then also implement

-(UIViewk)alternativeIconViewWithFrame: (CGRect)frame;

As with the buttons view, this will not change frame size during rotation, and will also keep the
same origin too. Additionally, this view does not mask to bounds, so you may extend beyond the

given bounds. Bear in mind though that the touch area for launching the icon will not extend
beyond the frame given.

Additional optional methods

In addition to the methods already covered by this document, there are also other methods that
you can implement in your widget that will affect how the framework will treat it.

For now, this is only the below method:
—(NSStringx)customHexColor;

Implementing this will allow you to specify a custom colour in hex for the background of the
widget. Nothing fancy, just do:

return @"FFFFFF";

Widget directory layout

Each widget will have an Info.plist file and an executable at a minimum, like so:

'Projects/Curage/Git/Widgets/calendar/calendar/Package/var/mobile/Library/Curago/Widg...

= v = o ol .]::. w % w Q
PLIST
calendar lcon.png lcon@2x.png Info.plist

Additionally, icon files are not mandatory; if none are present, then the app's icon will be used
instead. The iOS Blocks framework will automatically search for an Icon.png with the appropriate
suffix for device resolution.

The folder name for your widget should be like so:
<your_dev_name>.<app_bundle_id>

e.g.
matchstic.com.clickgamer.AngryBirds

The reasoning for this is so that multiple widgets for the same app may be installed, and then the
user can choose which to use in the iOS Blocks settings.

Default widgets provided by iOS Blocks will omit the <your_dev_name> prefix.

All widgets are located in /var/mobile/Library/Curago/Widgets

Info.plist Options

Within each widget's directory is an Info.plist which also contains a few additional options; most
options are only relevant when using HTML instead of Objective-C, which is covered by another
document. Only those relevant are given here.

CustomGameWidget : boolean

Specify true if you are making a widget for a game, else iOS Blocks will display it's own game
widget rather than yours.

CustomColor : string

A hex string representing the background colour of the widget. This is not necessary if you
implement the given protocol method for this.

WantsNotificationsTable : boolean
Specify true if you wish to use iOS Blocks' in-built notifications widget, but also want to

customise it with a custom background colour or icon image. Bear in mind that you cannot load
up any code if this is true.

